sam.nitk.ac.in

Mathematical Methods for Engineers (MA 713) Problem Sheet - 7

Matrix Representation of a Linear Transformation

- 1. Label the following statements as true or false. Assume that *V* and *W* are finite-dimensional vector spaces with ordered bases β and γ , respectively, and *T*, $U : V \rightarrow W$ are linear transformations.
 - (a) $[T]^{\gamma}_{\beta} = [U]^{\gamma}_{\beta}$ implies that T = U.
 - (b) If $m = \dim(V)$ and $n = \dim(W)$, then $[T]^{\gamma}_{\beta}$ is an $m \times n$ matrix.
 - (c) $[T+U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma} + [U]_{\beta}^{\gamma}$
 - (d) $\mathcal{L}(V, W)$ is a vector space.
 - (e) $\mathcal{L}(V,W)=\mathcal{L}(W,V)$.
- 2. Let β and γ be the standard ordered bases for \mathbb{R}^n and \mathbb{R}^m , respectively. For each linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, compute $[T]_{\beta}^{\gamma}$.
 - (a) $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(a_1, a_2, a_3) = (2a_1 + 3a_2 a_3, a_1 + a_3)$.
 - (b) $T : \mathbb{R}^3 \to \mathbb{R}$ defined by $T(a_1, a_2, a_3) = 2a_1 + a_2 3a_3$.
 - (c) $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(a_1, a_2, \dots, a_n) = (a_n, a_{n-1}, \dots, a_1)$.
 - (d) $T : \mathbb{R}^n \to \mathbb{R}$ defined by $T(a_1, a_2, \dots, a_n) = a_1 + a_n$.
- 3. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(a_1, a_2) = (a_1 a_2, a_1, 2a_1 + a_2)$. Let β be the standard ordered basis for \mathbb{R}^2 and $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$. Compute $[T]_{\beta}^{\gamma}$. If $\alpha = \{(1, 2), (2, 3)\}$, compute $[T]_{\alpha}^{\gamma}$.
- 4. Define

$$T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$$
 by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + (2d)x + bx^2.$

Let

$$\beta = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\} \text{ and } \gamma = \{1, x, x^2\}.$$

Compute $[T]_{\beta}^{\gamma}$.

5. Let

$$\begin{split} \alpha &= \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}, \\ \beta &= \{1, x, x^2\}, \end{split}$$

and

 $\gamma = \{1\}.$

(a) Define $T: M_{2\times 2}(F) \to M_{2\times 2}(F)$ by $T(A) = A^t$. Compute $[T]_{\alpha}$.

(b) Define

$$T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$$
 by $T(f(x)) = \begin{pmatrix} f'(0) & 2f(1) \\ 0 & f''(3) \end{pmatrix}$,

where ' denotes differentiation. Compute $[T]_{\beta}^{\alpha}$.

- (c) Define $T: M_{2\times 2}(F) \to F$ by T(A) = tr(A). Compute $[T]^{\gamma}_{\alpha}$.
- (d) Define $T : P_2(\mathbb{R}) \to \mathbb{R}$ by T(f(x)) = f(2). Compute $[T]_{\beta}^{\gamma}$.
- (e) If

$$A = \left(\begin{array}{cc} 1 & -2 \\ 0 & 4 \end{array}\right),$$

compute $[A]_{\alpha}$.

- (f) If $f(x) = 3 6x + x^2$, compute $[f(x)]_{\beta}$.
- (g) For $a \in F$, compute $[a]_{\gamma}$.
- 6. Let *V* be an *n*-dimensional vector space with an ordered basis β . Define $T : V \to F^n$ by $T(x) = [x]_{\beta}$. Prove that *T* is linear.
- 7. Let *V* be the vector space of complex numbers over the field \mathbb{R} . Define $T : V \to V$ by $T(z) = \overline{z}$, where \overline{z} is the complex conjugate of *z*. Prove that *T* is linear, and compute $[T]_{\beta}$, where $\beta = \{1, i\}$. (Recall that *T* is not linear if *V* is regarded as a vector space over the field \mathbb{C} .)
- 8. Let *V* be a vector space with the ordered basis $\beta = \{v_1, v_2, \dots, v_n\}$. Define $v_0 = 0$. Then there exists a linear transformation $T : V \to V$ such that $T(v_j) = v_j + v_{j-1}$ for $j = 1, 2, \dots, n$. Compute $[T]_{\beta}$.
- 9. Let *V* be an *n*-dimensional vector space, and let $T : V \to V$ be a linear transformation. Suppose that *W* is a *T*-invariant subspace of *V* having dimension *k*. Show that there is a basis β for *V* such that $[T]_{\beta}$ has the form

$$\begin{pmatrix} A & B \\ O & C \end{pmatrix},$$

where *A* is a $k \times k$ matrix and *O* is the $(n - k) \times k$ zero matrix.

- 10. Let *V* be a finite-dimensional vector space and *T* be the projection on *W* along *W'*, where *W* and *W'* are subspaces of *V*. Find an ordered basis β for *V* such that $[T]_{\beta}$ is a diagonal matrix.
- 11. Let *V* and *W* be vector spaces, and let *T* and *U* be nonzero linear transformations from *V* into *W*. If $R(T) \cap R(U) = \{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathcal{L}(V, W)$.
- 12. Let $V = P(\mathbb{R})$, and for $j \ge 1$ define $T_j(f(x)) = f^{(j)}(x)$, where $f^{(j)}(x)$ is the *j*th derivative of f(x). Prove that the set $\{T_1, T_2, \ldots, T_n\}$ is a linearly independent subset of $\mathcal{L}(V)$ for any positive integer *n*.
- 13. Let *V* and *W* be vector spaces, and let *S* be a subset of *V*. Define $S^0 = \{T \in \mathcal{L}(V, W) : T(x) = 0 \text{ for all } x \in S\}$. Prove the following statements.
 - (a) S^0 is a subspace of $\mathcal{L}(V, W)$.
 - (b) If S_1 and S_2 are subsets of *V* and $S_1 \subseteq S_2$, then $S_2^0 \subseteq S_1^0$.
 - (c) If V_1 and V_2 are subspaces of V, then $(V_1 + V_2)^0 = V_1^0 \cap V_2^0$.
- 14. Let *V* and *W* be vector spaces such that $\dim(V) = \dim(W)$, and let $T : V \to W$ be linear. Show that there exist ordered bases β and γ for *V* and *W*, respectively, such that $[T]^{\gamma}_{\beta}$ is a diagonal matrix.
